Sturm–Liouville?type operators with frozen argument and Chebyshev polynomials
نویسندگان
چکیده
In recent years, there appeared a growing interest in the inverse spectral theory for functional-differential operators with frozen argument. Such are nonlocal and belong to so-called loaded differential operators, which frequently appear mathematics as well natural sciences engineering. However, various classes of classical methods not applicable. For this reason, it is relevant develop new approaches solving problems type. We establish deep connection between problem argument Chebyshev polynomials first second kinds. Appearing be an from point view itself, gives perspective method studying particular, allows one completely describe all non-degenerate degenerate cases, that is, when corresponding uniquely solvable or not, respectively. Moreover, convenient description isospectral potentials case, demonstrated by some illustrative examples.
منابع مشابه
Chebyshev Polynomials with Integer Coefficients
We study the asymptotic structure of polynomials with integer coef cients and smallest uniform norms on an interval of the real line Introducing methods of the weighted potential theory into this problem we improve the bounds for the multiplicities of some factors of the integer Chebyshev polynomials Introduction Let Pn C and Pn Z be the sets of algebraic polynomials of degree at most n respect...
متن کاملCombinatorial Trigonometry with Chebyshev Polynomials
The Chebyshev polynomials have many beautiful properties and countless applications, arising in a variety of continuous settings. They are a sequence of orthogonal polynomials appearing in approximation theory, numerical integration, and differential equations. In this paper we approach them instead as discrete objects, counting the sum of weighted tilings. Using this combinatorial approach, on...
متن کاملChebyshev Polynomials and Primality Tests
Algebraic properties of Chebyshev polynomials are presented. The complete factorization of Chebyshev polynomials of the rst kind (Tn(x)) and second kind (Un(x)) over the integers are linked directly to divisors of n and n + 1 respectively. For any odd integer n, it is shown that the polynomial Tn(x)=x is irreducible over the integers i n is prime. The result leads to a generalization of Fermat'...
متن کاملTotal Characters and Chebyshev Polynomials
The total character τ of a finite group G is defined as the sum of all the irreducible characters of G. K. W. Johnson asks when it is possible to express τ as a polynomial with integer coefficients in a single irreducible character. In this paper, we give a complete answer to Johnson’s question for all finite dihedral groups. In particular, we show that, when such a polynomial exists, it is uni...
متن کاملSymmetrized Chebyshev Polynomials
We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in The Applied Sciences
سال: 2022
ISSN: ['1099-1476', '0170-4214']
DOI: https://doi.org/10.1002/mma.8327